Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 6174, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268784

RESUMEN

Radiographic imaging with x-rays and protons is an omnipresent tool in basic research and applications in industry, material science and medical diagnostics. The information contained in both modalities can often be valuable in principle, but difficult to access simultaneously. Laser-driven solid-density plasma-sources deliver both kinds of radiation, but mostly single modalities have been explored for applications. Their potential for bi-modal radiographic imaging has never been fully realized, due to problems in generating appropriate sources and separating image modalities. Here, we report on the generation of proton and x-ray micro-sources in laser-plasma interactions of the focused Texas Petawatt laser with solid-density, micrometer-sized tungsten needles. We apply them for bi-modal radiographic imaging of biological and technological objects in a single laser shot. Thereby, advantages of laser-driven sources could be enriched beyond their small footprint by embracing their additional unique properties, including the spectral bandwidth, small source size and multi-mode emission.


Asunto(s)
Gryllidae/ultraestructura , Imagen Multimodal/métodos , Radiografía/métodos , Animales , Rayos Láser , Imagen Multimodal/instrumentación , Protones , Radiografía/instrumentación , Rayos X
2.
Nat Commun ; 9(1): 423, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379024

RESUMEN

Often, the interpretation of experiments concerning the manipulation of the energy distribution of laser-accelerated ion bunches is complicated by the multitude of competing dynamic processes simultaneously contributing to recorded ion signals. Here we demonstrate experimentally the acceleration of a clean proton bunch. This was achieved with a microscopic and three-dimensionally confined near critical density plasma, which evolves from a 1 µm diameter plastic sphere, which is levitated and positioned with micrometer precision in the focus of a Petawatt laser pulse. The emitted proton bunch is reproducibly observed with central energies between 20 and 40 MeV and narrow energy spread (down to 25%) showing almost no low-energetic background. Together with three-dimensional particle-in-cell simulations we track the complete acceleration process, evidencing the transition from organized acceleration to Coulomb repulsion. This reveals limitations of current high power lasers and viable paths to optimize laser-driven ion sources.

3.
Nat Commun ; 8(1): 487, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28887456

RESUMEN

Laser-plasma wakefield accelerators have seen tremendous progress, now capable of producing quasi-monoenergetic electron beams in the GeV energy range with few-femtoseconds bunch duration. Scaling these accelerators to the nanocoulomb range would yield hundreds of kiloamperes peak current and stimulate the next generation of radiation sources covering high-field THz, high-brightness X-ray and γ-ray sources, compact free-electron lasers and laboratory-size beam-driven plasma accelerators. However, accelerators generating such currents operate in the beam loading regime where the accelerating field is strongly modified by the self-fields of the injected bunch, potentially deteriorating key beam parameters. Here we demonstrate that, if appropriately controlled, the beam loading effect can be employed to improve the accelerator's performance. Self-truncated ionization injection enables loading of unprecedented charges of ∼0.5 nC within a mono-energetic peak. As the energy balance is reached, we show that the accelerator operates at the theoretically predicted optimal loading condition and the final energy spread is minimized.Higher beam quality and stability are desired in laser-plasma accelerators for their applications in compact light sources. Here the authors demonstrate in laser plasma wakefield electron acceleration that the beam loading effect can be employed to improve beam quality by controlling the beam charge.

4.
Phys Rev E ; 96(1-1): 013316, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29347084

RESUMEN

For the relativistic Kelvin-Helmholtz instability (KHI), which occurs at shear interfaces between two plasma streams, we report results on the polarized radiation over all observation directions and frequencies emitted by the plasma electrons from ab initio kinetic simulations. We find the polarization of the radiation to provide a clear signature for distinguishing the linear phase of the KHI from its other phases. During the linear phase, we predict the growth rate of the KHI radiation power to match the growth rate of the KHI to a high degree. Our predictions are based on a model of the vortex dynamics, which describes the electron motion in the vicinity of the shear interface between the two streams. Albeit the complex and turbulent dynamics happening in the shear region, we find excellent agreement between our model and large-scale particle-in-cell simulations. Our findings pave the way for identifying the KHI linear regime and for measuring its growth rate in astrophysical jets observable on earth as well as in laboratory plasmas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...